Best paper NASS 2013: link-N can stimulate proteoglycan synthesis in the degenerated human intervertebral discs.
نویسندگان
چکیده
Intervertebral disc (IVD) degeneration is the most common cause of back pain. Presently there is no medical treatment, leaving surgery as the only offered option. Here we evaluate the potential of Link-N to promote extracellular matrix regeneration in human IVDs. Human disc cells cultured in alginate and intact human discs were exposed to a combination of Link-N and ³⁵SO₄ in the presence or absence of interleukin (IL)-1, and the effect on proteoglycan synthesis was evaluated. In addition, message levels of aggrecan, matrix metalloproteinase (MMP)-3, MMP-13, a Disintegrin And Metalloproteinase with Thrombospondin Motifs (ADAMTS)-4 and ADAMTS-5 were evaluated in alginate cultures. Human disc cells responded in a dose dependent manner with maximal proteoglycan synthesis at 1 µg/mL Link-N. Link-N treatment also induced proteoglycan synthesis in intact human discs, and a prolonged effect was found up to one week after Link-N treatment. Message levels of proteinases were decreased by Link-N in the presence of IL-1. Thus, Link-N can promote proteoglycan synthesis and deplete proteinase expression in adult human discs. Link-N could therefore be a promising candidate for biologically-induced disc repair, and could provide an alternative to surgical intervention for early stage disc degeneration.
منابع مشابه
Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae.
Link N (DHLSDNYTLDHDRAIH) is a peptide that occurs naturally in the intervertebral discs (IVDs) and cartilage as a result of proteolytic cleavage of Link protein. Several studies have identified Link N as a growth factor capable of stimulating matrix synthesis in these tissues. We have recently discovered that annulus fibrosus cells can release an enzyme (possibly cathepsin K) that can further ...
متن کاملMeasurements of proteoglycan and water content distribution in human lumbar intervertebral discs.
STUDY DESIGN Study of regional variations in composition in a sample of 9 mildly to moderately degenerated human intervertebral discs. OBJECTIVE The aim of this study was to obtain proteoglycan distribution in human lumbar discs with high position resolution in the: 1) sagittal, 2) coronal, and 3) axial directions. SUMMARY OF BACKGROUND DATA Regional variation in disc proteoglycan content h...
متن کاملThe efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration
INTRODUCTION Intervertebral disc (IVD) degeneration is associated with proteolytic degradation of the extracellular matrix, and its repair requires both the production of extracellular matrix and the downregulation of proteinase activity. These properties are associated with several growth factors. However, the use of growth factors in clinical practice is limited by their high cost. This cost ...
متن کاملAdipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs.
Patients with degenerative disc disease (DDD) experience serious clinical symptoms, including chronic low back pain. A series of therapies have been developed to treat DDD, including physical therapy and surgical treatment. However, the therapeutic effect of such treatments has remained insufficient. Recently, stem cell‑based therapy, in which stem cells are injected into the nucleus pulposus i...
متن کاملThe effect of Link N on differentiation of human bone marrow-derived mesenchymal stem cells
INTRODUCTION We previously showed that Link N can stimulate extracellular matrix biosynthesis by intervertebral disc (IVD) cells, both in vitro and in vivo, and is therefore a potential stimulator of IVD repair. The purpose of the present study was to determine how Link N may influence human mesenchymal stem cell (MSC) differentiation, as a prelude to using Link N and MSC supplementation in uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 26 شماره
صفحات -
تاریخ انتشار 2013